skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bai, Kun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper presents a distributed current source (DCS) method for modeling the dynamic responses of eddy current density (ECD) induced in electrical conductors and its corresponding magnetic flux density (MFD); both nonmagnetic and weakly magnetized conductors are considered. Unlike conventional numerical methods such as finite element analysis (FEA), the DCS method, which accounts for the eddy-current and magnetization effects by means of equivalent volume and surface current-sources, derives closed-form solutions to the ECD and MFD fields in state-space representation. The model has been experimentally validated and verified by comparing results from FEA simulations with both harmonic and nonharmonic excitations. To gain physical insights to the measured MFD for simultaneous estimating the material/geometrical properties of a conductor, the static and dynamic responses to rectangular pulsed current excitations have been numerically investigated, confirming the feasibility and effectiveness of the measurement methods. 
    more » « less